cars.applications.dense_matching.census_mccnn_sgm
this module contains the dense_matching application class.
Module Contents
Classes
Census SGM & MCCNN SGM matching class |
Functions
|
Compute disparity maps from image objects. |
- class cars.applications.dense_matching.census_mccnn_sgm.CensusMccnnSgm(conf=None)
Bases:
cars.applications.dense_matching.dense_matching.DenseMatching
Census SGM & MCCNN SGM matching class
- check_conf(conf)
Check configuration
- Parameters
conf (dict) – configuration to check
- Returns
overloaded configuration
- Return type
dict
- get_margins_fun(grid_left, disp_range_grid)
Get Margins function that generates margins needed by matching method, to use during resampling
- Parameters
grid_left – left epipolar grid
disp_min_grid – minimum and maximum disparity grid
- Returns
function that generates margin for given roi
- get_optimal_tile_size(disp_range_grid, max_ram_per_worker)
Get the optimal tile size to use during dense matching.
- Parameters
disp_range_grid – minimum and maximum disparity grid
max_ram_per_worker – maximum ram per worker
- Returns
optimal tile size
- generate_disparity_grids(sensor_image_right, grid_right, geom_plugin_with_dem_and_geoid, dmin=None, dmax=None, altitude_delta_min=None, altitude_delta_max=None, dem_median=None, dem_min=None, dem_max=None, pair_folder=None)
Generate disparity grids min and max, with given step
global mode: uses dmin and dmax local mode: uses dems
- Parameters
sensor_image_right (dict) – sensor image right
grid_right (CarsDataset) – right epipolar grid
geom_plugin_with_dem_and_geoid (GeometryPlugin) – geometry plugin with dem mean used to generate epipolar grids
dmin (float) – minimum disparity
dmax (float) – maximum disparity
altitude_delta_max (int) – Delta max of altitude
altitude_delta_min (int) – Delta min of altitude
dem_median (str) – path to median dem
dem_min (str) – path to minimum dem
dem_max (str) – path to maximum dem
pair_folder (str) – folder used for current pair
:return disparity grid range, containing grid min and max :rtype: CarsDataset
- run(epipolar_images_left, epipolar_images_right, local_tile_optimal_size_fun, orchestrator=None, pair_folder=None, pair_key='PAIR_0', disp_range_grid=None, compute_disparity_masks=False, disp_to_alt_ratio=None)
Run Matching application.
Create CarsDataset filled with xarray.Dataset, corresponding to epipolar disparities, on the same geometry than epipolar_images_left.
- Parameters
epipolar_images_left (CarsDataset) –
tiled left epipolar CarsDataset contains:
N x M Delayed tiles. Each tile will be a future xarray Dataset containing:
data with keys : “im”, “msk”, “color”
attrs with keys: “margins” with “disp_min” and “disp_max” “transform”, “crs”, “valid_pixels”, “no_data_mask”, “no_data_img”
- attributes containing:
”largest_epipolar_region”,”opt_epipolar_tile_size”
epipolar_images_right (CarsDataset) –
tiled right epipolar CarsDataset contains:
N x M Delayed tiles. Each tile will be a future xarray Dataset containing:
data with keys : “im”, “msk”, “color”
- attrs with keys: “margins” with “disp_min” and “disp_max”
”transform”, “crs”, “valid_pixels”, “no_data_mask”, “no_data_img”
- attributes containing:
”largest_epipolar_region”,”opt_epipolar_tile_size”
local_tile_optimal_size_fun (func) – function to compute local optimal tile size
orchestrator – orchestrator used
pair_folder (str) – folder used for current pair
pair_key (str) – pair id
disp_range_grid (CarsDataset) – minimum and maximum disparity grid
disp_to_alt_ratio (float) – disp to alti ratio used for performance map
- Returns
disparity map: The CarsDataset contains:
- N x M Delayed tiles. Each tile will be a future xarray Dataset containing:
data with keys : “disp”, “disp_msk”
attrs with keys: profile, window, overlaps
- attributes containing:
- ”largest_epipolar_region”,”opt_epipolar_tile_size”,
”disp_min_tiling”, “disp_max_tiling”
- Return type
- cars.applications.dense_matching.census_mccnn_sgm.compute_disparity_wrapper(left_image_object: xarray.Dataset, right_image_object: xarray.Dataset, corr_cfg: dict, disp_range_grid, saving_info=None, compute_disparity_masks=False, generate_performance_map=False, perf_ambiguity_threshold=0.6, disp_to_alt_ratio=None, crop_with_range=None) Dict[str, Tuple[xarray.Dataset, xarray.Dataset]]
Compute disparity maps from image objects. This function will be run as a delayed task.
User must provide saving infos to save properly created datasets
- Parameters
left_image_object –
tiled Left image - dataset with :
cst.EPI_IMAGE
cst.EPI_MSK (if given)
cst.EPI_COLOR (for left, if given)
right_image_object (xr.Dataset) – tiled Right image
corr_cfg (dict) – Correlator configuration
disp_range_grid (np.ndarray) – minimum and maximum disparity grid
compute_disparity_masks (bool) – Compute all the disparity pandora masks(disable by default)
generate_performance_map (bool) – True if generate performance map
perf_ambiguity_threshold (float) – ambiguity threshold used for performance map
disp_to_alt_ratio (float) – disp to alti ratio used for performance map
crop_with_range (float) – range length to crop disparity range with
- Returns
Left to right disparity dataset Returned dataset is composed of :
cst_disp.MAP
cst_disp.VALID
cst.EPI_COLOR