cars.applications.sparse_matching.sparse_matching
this module contains the abstract matching application class.
Module Contents
Classes
SparseMatching |
- class cars.applications.sparse_matching.sparse_matching.SparseMatching(conf=None)[source]
Bases:
cars.applications.application_template.ApplicationTemplate
SparseMatching
- available_applications: Dict
- default_application = 'sift'
- abstract get_disparity_margin()[source]
Get disparity margin corresponding to sparse matches
- Returns
margin in percent
- abstract get_strip_margin()[source]
Get strip margin corresponding to sparse matches
- Returns
margin
- abstract get_epipolar_error_upper_bound()[source]
Get epipolar error upper bound corresponding to sparse matches
- Returns
margin
- abstract get_epipolar_error_maximum_bias()[source]
Get epipolar error lower bound corresponding to sparse matches
- Returns
margin
- abstract get_matches_filter_knn()[source]
Get matches_filter_knn : number of neighboors used to measure isolation of matches
- Returns
matches_filter_knn
- abstract get_matches_filter_dev_factor()[source]
Get matches_filter_dev_factor : factor of deviation in the formula to compute threshold of outliers
- Returns
matches_filter_dev_factor
- abstract get_minimum_nb_matches()[source]
Get minimum_nb_matches : get the minimum number of matches
- Returns
minimum_nb_matches
- get_margins_fun(disp_min=None, disp_max=None, method='sift')[source]
Get margins function to use in resampling
- Parameters
disp_min – disp min for info
disp_max – disp max for info
method – method for the margins
- Returns
margins function
- Return type
function generating xr.Dataset
- filter_matches(epipolar_matches_left, grid_left, grid_right, geom_plugin, orchestrator=None, pair_key='pair_0', pair_folder=None, save_matches=False)[source]
Transform matches CarsDataset to numpy matches, and filters matches
- Parameters
cars_orchestrator – orchestrator
epipolar_matches_left (CarsDataset) –
matches. CarsDataset contains:
N x M Delayed tiles Each tile will be a future pandas DataFrame containing:
data : (L, 4) shape matches
attributes containing “disp_lower_bound”, “disp_upper_bound”, “elevation_delta_lower_bound”,”elevation_delta_upper_bound”
grid_left (CarsDataset) – left epipolar grid
grid_right (CarsDataset) – right epipolar grid
save_matches (bool) – true is matches needs to be saved
:return filtered matches :rtype: np.ndarray
- abstract get_save_matches()[source]
Get save_matches parameter
- Returns
true is save_matches activated
- Return type
bool
- abstract run(epipolar_image_left, epipolar_image_right, **kwargs)[source]
Run Matching application.
Create left and right CarsDataset filled with pandas.DataFrame , corresponding to epipolar 2D disparities, on the same geometry that epipolar_images_left and epipolar_images_right.
- Parameters
epipolar_image_left (CarsDataset) – tiled left epipolar
epipolar_image_right (CarsDataset) – tiled right epipolar
disp_to_alt_ratio (float) – disp to alti ratio
orchestrator – orchestrator used
pair_folder (str) – folder used for current pair
pair_key (str) – pair key id
mask1_ignored_by_sift (list) – values used in left mask to ignore in correlation
mask2_ignored_by_sift (list) – values used in right mask to ignore in correlation
:return left matches, right matches :rtype: Tuple(CarsDataset, CarsDataset)