cars.applications.triangulation.triangulation_tools
Preprocessing module: contains functions used for triangulation
Module Contents
Functions
|
This function will perform triangulation from a disparity map |
|
This function will perform triangulation from sift matches |
|
Compute points cloud |
|
Add layer point cloud to point cloud dataset |
|
Compute the point cloud height offset from geoid. |
- cars.applications.triangulation.triangulation_tools.triangulate(geometry_plugin, sensor1, sensor2, geomodel1, geomodel2, grid1, grid2, disp_ref: xarray.Dataset) Dict[str, xarray.Dataset]
This function will perform triangulation from a disparity map
- Parameters
geometry_plugin (AbstractGeometry) – geometry plugin to use
sensor1 (str) – path to left sensor image
sensor2 (str) – path to right sensor image
geomodel1 (dict) – path and attributes for left geomodel
geomodel2 (dict) – path and attributes for right geomodel
grid1 (CarsDataset) – dataset of the reference image grid file
grid2 (CarsDataset) – dataset of the secondary image grid file
disp_ref – left to right disparity map dataset
im_ref_msk_ds – reference image dataset (image and mask (if indicated by the user) in epipolar geometry)
- Returns
point_cloud as a dictionary of dataset containing:
Array with shape (roi_size_x,roi_size_y,3), with last dimension corresponding to longitude, latitude and elevation
Array with shape (roi_size_x,roi_size_y) with output mask
Array for color (optional): only if color1 is not None
The dictionary keys are :
‘ref’ to retrieve the dataset built from the left to right disparity map
‘sec’ to retrieve the dataset built from the right to left disparity map (if provided in input)
- cars.applications.triangulation.triangulation_tools.triangulate_matches(geometry_plugin, sensor1, sensor2, geomodel1, geomodel2, grid1, grid2, matches)
This function will perform triangulation from sift matches
- Parameters
geometry_plugin (AbstractGeometry) – geometry plugin to use
sensor1 (str) – path to left sensor image
sensor2 (str) – path to right sensor image
geomodel1 (dict) – path and attributes for left geomodel
geomodel2 (dict) – path and attributes for right geomodel
grid1 (CarsDataset) – dataset of the reference image grid file
grid2 (CarsDataset) – dataset of the secondary image grid file
matches – numpy.array of matches of shape (nb_matches, 4)
- Returns
point_cloud as a panda DataFrame containing:
Array with shape (nb_matches,1,3), with last dimension corresponding to longitude, latitude and elevation
Array with shape (nb_matches,1) with output mask
cst.X
cst.Y
cst.Z
corr_mask
lon
lat
- Return type
pandas.DataFrame
- cars.applications.triangulation.triangulation_tools.compute_points_cloud(geometry_plugin, sensor1, sensor2, geomodel1, geomodel2, grid1, grid2, data: xarray.Dataset, roi_key: str) xarray.Dataset
Compute points cloud
- Parameters
geometry_plugin – geometry plugin to use
data – The reference to disparity map dataset
sensor1 – path to left sensor image
sensor2 – path to right sensor image
geomodel1 – path and attributes for left geomodel
geomodel2 – path and attributes for right geomodel
grid1 – dataset of the reference image grid file
grid2 – dataset of the secondary image grid file
roi_key – roi of the disparity map key (‘roi’ if cropped while calling create_disp_dataset, otherwise ‘roi_with_margins’)
dataset_msk – dataset with mask information to use
- Returns
the points cloud dataset
- cars.applications.triangulation.triangulation_tools.add_layer(dataset, layer_name, layer_coords, point_cloud, nodata_index=None)
Add layer point cloud to point cloud dataset
- Parameters
data – layer point cloud dataset
nodata_index – nodata index array
point_cloud – point cloud dataset
- cars.applications.triangulation.triangulation_tools.geoid_offset(points, geoid)
Compute the point cloud height offset from geoid.
- Parameters
points (xarray.Dataset) – point cloud data in lat/lon/alt WGS84 (EPSG 4326) coordinates.
geoid (xarray.Dataset) – geoid elevation data.
- Returns
the same point cloud but using geoid as altimetric reference.
- Return type
xarray.Dataset