cars.orchestrator.cluster.mp_cluster.multiprocessing_profiler
Contains multiprocessing_profiler class
Module Contents
Classes
Start time |
|
MultiprocessingProfiler |
Functions
|
Clean thread |
|
Get process current memory |
|
Get cpu usage |
|
Save data during compute |
|
Check memory usage of each worker in pool |
|
Save dataframe to disk |
Attributes
- cars.orchestrator.cluster.mp_cluster.multiprocessing_profiler.TERMINATE = 1
- cars.orchestrator.cluster.mp_cluster.multiprocessing_profiler.RUN = 0
- cars.orchestrator.cluster.mp_cluster.multiprocessing_profiler.RAM_PER_WORKER_CHECK_SLEEP_TIME = 2
- cars.orchestrator.cluster.mp_cluster.multiprocessing_profiler.INTERVAL_CPU = 0.2
- cars.orchestrator.cluster.mp_cluster.multiprocessing_profiler.SAVE_TIME = 120
- cars.orchestrator.cluster.mp_cluster.multiprocessing_profiler.TIME = 'time'
- cars.orchestrator.cluster.mp_cluster.multiprocessing_profiler.MAIN_MEMORY = 'main_memory'
- cars.orchestrator.cluster.mp_cluster.multiprocessing_profiler.MAX_PROCESS_MEMORY = 'max_process_memory'
- cars.orchestrator.cluster.mp_cluster.multiprocessing_profiler.MAIN_AND_PROCESS = 'main_and_processes'
- cars.orchestrator.cluster.mp_cluster.multiprocessing_profiler.TOTAL_PROCESS_MEMORY = 'total_process_memory'
- cars.orchestrator.cluster.mp_cluster.multiprocessing_profiler.AVAILABLE_RAM = 'available_ram'
- cars.orchestrator.cluster.mp_cluster.multiprocessing_profiler.TOTAL_RAM = 'total_ram'
- cars.orchestrator.cluster.mp_cluster.multiprocessing_profiler.MAIN_CPU_USAGE = 'main_cpu_usage'
- cars.orchestrator.cluster.mp_cluster.multiprocessing_profiler.TOTAL_PROCESS_CPU_USAGE = 'total Proces_cpu_usage'
- cars.orchestrator.cluster.mp_cluster.multiprocessing_profiler.MAIN_AND_PROCESS_CPU = 'main_and_process_cpu'
- class cars.orchestrator.cluster.mp_cluster.multiprocessing_profiler.MultiprocessingProfiler(pool, out_dir, max_ram_per_worker, mp_dataframe=None, timer=None)[source]
MultiprocessingProfiler
Used to profile memory in processes
- cars.orchestrator.cluster.mp_cluster.multiprocessing_profiler.clean_thread(thread)[source]
Clean thread
- Parameters
thread – thread to clean
- cars.orchestrator.cluster.mp_cluster.multiprocessing_profiler.get_process_memory(process)[source]
Get process current memory
:param process
- Returns
memory Mb
- cars.orchestrator.cluster.mp_cluster.multiprocessing_profiler.get_cpu_usage(process)[source]
Get cpu usage
- Parameters
process – Process to monitor
- cars.orchestrator.cluster.mp_cluster.multiprocessing_profiler.save_figure_in_thread(to_fill_dataframe, file_path)[source]
Save data during compute
- Parameters
to_fill_dataframe – dataframe to fill
file_path – path to save path
- cars.orchestrator.cluster.mp_cluster.multiprocessing_profiler.check_pool_memory_usage(main_process_id, pool, max_ram_per_worker, to_fill_dataframe, timer)[source]
Check memory usage of each worker in pool
- Parameters
main_process_id – main process id
pool – pool of worker
max_ram_per_worker – max ram to use per worker
to_fill_dataframe – dataframe to fill
timer – timer