cars.applications.point_cloud_fusion.mapping_to_terrain_tiles
this module contains the epipolar cloud fusion application class.
Module Contents
Classes
EpipolarCloudFusion |
Functions
|
Wrapper for point clouds fusion step : |
- class cars.applications.point_cloud_fusion.mapping_to_terrain_tiles.MappingToTerrainTiles(conf=None)[source]
Bases:
cars.applications.point_cloud_fusion.point_cloud_fusion.PointCloudFusion
EpipolarCloudFusion
- check_conf(conf)[source]
Check configuration
- Parameters
conf (dict) – configuration to check
- Returns
overloaded configuration
- Return type
dict
- run(list_epipolar_point_clouds, bounds, epsg, source_pc_names=None, orchestrator=None, margins=0, optimal_terrain_tile_width=500, roi=None, save_laz_output=False)[source]
Run EpipolarCloudFusion application.
Creates a CarsDataset corresponding to the merged point clouds, tiled with the terrain grid used during rasterization.
- Parameters
list_epipolar_point_clouds (list(CarsDataset) filled with xr.Dataset) –
list with point clouds Each CarsDataset contains:
N x M Delayed tiles. Each tile will be a future xarray Dataset containing:
data : with keys : “x”, “y”, “z”, “corr_msk” optional: “color”, “msk”,
attrs with keys: “margins”, “epi_full_size”, “epsg”
attributes containing: “disp_lower_bound”, “disp_upper_bound” “elevation_delta_lower_bound”, “elevation_delta_upper_bound”
bounds (list) – terrain bounds
epsg (str) – epsg to use
source_pc_names (list[str]) – source pc names
orchestrator (Orchestrator) – orchestrator used
margins (float) – margins needed for tiles, meter or degree
optimal_terrain_tile_width (int) – optimal terrain tile width
save_laz_output (bool) – save output point cloud as laz
- Returns
Merged point clouds
CarsDataset contains:
Z x W Delayed tiles Each tile will be a future pandas DataFrame containing:
data : with keys : “x”, “y”, “z”, “corr_msk” optional: “clr”, “msk”, “data_valid”,”coord_epi_geom_i”, “coord_epi_geom_j”,”idx_im_epi”
attrs with keys: “epsg”
attributes containing: “bounds”, “epsg”
- Return type
CarsDataset filled with pandas.DataFrame
- cars.applications.point_cloud_fusion.mapping_to_terrain_tiles.compute_point_cloud_wrapper(point_clouds, epsg, xmin: float = None, ymin: float = None, xmax: float = None, ymax: float = None, margins: float = 0, save_by_pair: bool = False, point_cloud_csv_file_name=None, point_cloud_laz_file_name=None, saving_info=None, source_pc_names=None)[source]
Wrapper for point clouds fusion step : - Convert a list of clouds to correct epsg
- Parameters
point_clouds (list((xr.Dataset, int))) – list of clouds, list of (dataset, dataset_id) with : - cst.X - cst.Y - cst.Z - cst.EPI_COLOR
epsg_code (int) – epsg code for the CRS of the output DSM
stereo_out_epsg (int) – epsg code to convert point cloud to, if needed
xmin – xmin of the rasterization grid (if None, will be estimated by the function)
xmin – xmin of the rasterization grid (if None, will be estimated by the function)
xmax – xmax of the rasterization grid (if None, will be estimated by the function)
ymax – ymax of the rasterization grid (if None, will be estimated by the function)
margins (float) – margins needed for tiles, meter or degree
save_by_pair (bool) – save point cloud as pair
point_cloud_csv_file_name (str) – write point cloud as CSV in filename (if None, the point cloud is not written as csv)
point_cloud_laz_file_name (str) – write point cloud as laz in filename (if None, the point cloud is not written as laz)
saving_info (dict) – informations about CarsDataset ID.
source_pc_names (list str) – source point cloud name (correspond to pair_key)
- Returns
merged point cloud dataframe with: - cst.X - cst.Y - cst.Z - cst.EPI_COLOR - attrs : xmin, xmax, ymin, ymax, saving_info
- Return type
pandas.DataFrame