cars.applications.dense_matching.dense_matching_tools
This module is responsible for the dense matching algorithms: - thus it creates a disparity map from a pair of images
Module Contents
Functions
|
Get margins for the dense matching steps |
|
Get masks dictionary from the disparity map in output of pandora. |
|
Add color and color mask to dataset |
|
Add classification to dataset |
|
Create the disparity dataset. |
|
Add confidences to dataset |
|
Add performance map to dataset |
|
This function will compute disparity. |
Compute optimal tile size according to estimated memory usage |
- cars.applications.dense_matching.dense_matching_tools.get_margins(disp_min, disp_max, corr_cfg)
Get margins for the dense matching steps
- Parameters
disp_min (int) – Minimum disparity
disp_max (int) – Maximum disparity
corr_cfg (dict) – Correlator configuration
- Returns
margins of the matching algorithm used
- cars.applications.dense_matching.dense_matching_tools.get_masks_from_pandora(disp: xarray.Dataset, compute_disparity_masks: bool) Dict[str, numpy.ndarray]
Get masks dictionary from the disparity map in output of pandora.
- Parameters
disp – disparity map (pandora output)
compute_disparity_masks – compute_disparity_masks activation status
- Returns
masks dictionary
- cars.applications.dense_matching.dense_matching_tools.add_color(output_dataset: xarray.Dataset, color: numpy.ndarray = None, color_type=None, color_mask: numpy.ndarray = None, band_im: list = None)
Add color and color mask to dataset
- Parameters
output_dataset – output dataset
color – color array
color_type – data type of pixels
color_mask – color mask array
band_im – list of band names
- cars.applications.dense_matching.dense_matching_tools.add_classification(output_dataset: xarray.Dataset, classif: numpy.ndarray = None, band_classif: list = None)
Add classification to dataset
- Parameters
output_dataset – output dataset
classif – classif array
band_im – list of band names
- cars.applications.dense_matching.dense_matching_tools.create_disp_dataset(disp: xarray.Dataset, ref_dataset: xarray.Dataset, compute_disparity_masks: bool = False, generate_performance_map=False, perf_ambiguity_threshold=0.6, disp_to_alt_ratio=None) xarray.Dataset
Create the disparity dataset.
- Parameters
disp – disparity map (result of pandora)
ref_dataset – reference dataset for the considered disparity map
compute_disparity_masks – compute_disparity_masks activation status
generate_performance_map (bool) – True if generate performance map
perf_ambiguity_threshold (float) – ambiguity threshold used for performance map
disp_to_alt_ratio (float) – disp to alti ratio used for performance map
- Returns
disparity dataset as used in cars
- cars.applications.dense_matching.dense_matching_tools.add_confidence(output_dataset: xarray.Dataset, disp: xarray.Dataset, ref_roi: List[int])
Add confidences to dataset
- Parameters
output_dataset – output dataset
disp – disp xarray
- cars.applications.dense_matching.dense_matching_tools.add_performance_map(output_dataset: xarray.Dataset, disp: xarray.Dataset, ref_roi: List[int], perf_ambiguity_threshold: float, disp_to_alt_ratio: float)
Add performance map to dataset
- Parameters
output_dataset – output dataset
disp – disp xarray
perf_ambiguity_threshold (float) – ambiguity threshold used for performance map
disp_to_alt_ratio (float) – disp to alti ratio used for performance map
- cars.applications.dense_matching.dense_matching_tools.compute_disparity(left_dataset, right_dataset, corr_cfg, disp_min=None, disp_max=None, compute_disparity_masks=False, generate_performance_map=False, perf_ambiguity_threshold=0.6, disp_to_alt_ratio=None) Dict[str, xarray.Dataset]
This function will compute disparity.
- Parameters
left_dataset (xarray.Dataset) – Dataset containing left image and mask
right_dataset (xarray.Dataset) – Dataset containing right image and mask
corr_cfg (dict) – Correlator configuration
disp_min (int) – Minimum disparity (if None, value is taken from left dataset)
disp_max (int) – Maximum disparity (if None, value is taken from left dataset)
compute_disparity_masks (Boolean) – Activation of compute_disparity_masks mode
generate_performance_map (bool) – True if generate performance map
perf_ambiguity_threshold (float) – ambiguity threshold used for performance map
disp_to_alt_ratio (float) – disp to alti ratio used for performance map
- Returns
Disparity dataset
- cars.applications.dense_matching.dense_matching_tools.optimal_tile_size_pandora_plugin_libsgm(disp_min: int, disp_max: int, min_tile_size: int, max_tile_size: int, max_ram_per_worker: int, tile_size_rounding: int = 50, margin: int = 0) int
Compute optimal tile size according to estimated memory usage (pandora_plugin_libsgm) Returned optimal tile size will be at least equal to tile_size_rounding.
- Parameters
disp_min – Minimum disparity to explore
disp_max – Maximum disparity to explore
min_tile_size – Minimal tile size
max_tile_size – Maximal tile size
max_ram_per_worker – amount of RAM allocated per worker
tile_size_rounding – Optimal tile size will be aligned to multiples of tile_size_rounding
margin – margin to remove to the computed tile size (as a percent of the computed tile size)
- Returns
Optimal tile size according to benchmarked memory usage