cars.applications.sparse_matching.sparse_matching
this module contains the abstract matching application class.
Module Contents
Classes
SparseMatching |
- class cars.applications.sparse_matching.sparse_matching.SparseMatching(conf=None)[source]
Bases:
cars.applications.application_template.ApplicationTemplate
SparseMatching
- available_applications: Dict
- default_application = 'sift'
- abstract get_disparity_margin()[source]
Get disparity margin corresponding to sparse matches
- Returns
margin in percent
- abstract get_matches_filter_knn()[source]
Get matches_filter_knn : number of neighboors used to measure isolation of matches
- Returns
matches_filter_knn
- abstract get_matches_filter_dev_factor()[source]
Get matches_filter_dev_factor : factor ofdeviation in the formula to compute threshold of outliers
- Returns
matches_filter_dev_factor
- abstract get_margins_fun()[source]
Get margins function to use in resampling
- Returns
margins function
- Return type
function generating xr.Dataset
- abstract get_save_matches()[source]
Get save_matches parameter
- Returns
true is save_matches activated
- Return type
bool
- abstract run(epipolar_images_left, epipolar_images_right, disp_to_alt_ratio, orchestrator=None, pair_folder=None, pair_key='PAIR_0', mask1_ignored_by_sift: List[int] = None, mask2_ignored_by_sift: List[int] = None)[source]
Run Matching application.
Create left and right CarsDataset filled with pandas.DataFrame , corresponding to epipolar 2D disparities, on the same geometry that epipolar_images_left and epipolar_images_right.
- Parameters
epipolar_images_left (CarsDataset) – tiled left epipolar
epipolar_images_right (CarsDataset) – tiled right epipolar
disp_to_alt_ratio (float) – disp to alti ratio
orchestrator – orchestrator used
pair_folder (str) – folder used for current pair
pair_key (str) – pair key id
mask1_ignored_by_sift (list) – values used in left mask to ignore in correlation
mask2_ignored_by_sift (list) – values used in right mask to ignore in correlation
:return left matches, right matches :rtype: Tuple(CarsDataset, CarsDataset)