cars.applications.point_cloud_fusion.point_cloud_fusion
this module contains the abstract PointCloudFusion application class.
Module Contents
Classes
PointCloudFusion |
- class cars.applications.point_cloud_fusion.point_cloud_fusion.PointCloudFusion(conf=None)[source]
Bases:
cars.applications.application_template.ApplicationTemplate
PointCloudFusion
- available_applications: Dict
- default_application = 'mapping_to_terrain_tiles'
- abstract run(list_epipolar_point_clouds, bounds, epsg, source_pc_names=None, orchestrator=None, margins=0, optimal_terrain_tile_width=500, roi=None)[source]
Run EpipolarCloudFusion application.
Creates a CarsDataset corresponding to the merged point clouds, tiled with the terrain grid used during rasterization.
- Parameters
list_epipolar_point_clouds (list(CarsDataset) filled with xr.Dataset) –
list with point clouds Each CarsDataset contains:
N x M Delayed tiles. Each tile will be a future xarray Dataset containing:
data : with keys : “x”, “y”, “z”, “corr_msk” optional: “color”, “msk”, “z_inf”, “z_sup”
attrs with keys: “margins”, “epi_full_size”, “epsg”
attributes containing: “disp_lower_bound”, “disp_upper_bound” “elevation_delta_lower_bound”, “elevation_delta_upper_bound”
bounds (list) – terrain bounds
epsg (str) – epsg to use
source_pc_names (list[str]) – source pc names
orchestrator (Orchestrator) – orchestrator used
margins (float) – margins needed for tiles, meter or degree
optimal_terrain_tile_width (int) – optimal terrain tile width
- Returns
Merged point clouds
CarsDataset contains:
Z x W Delayed tiles Each tile will be a future pandas DataFrame containing:
data : with keys : “x”, “y”, “z”, “corr_msk” optional: “clr”, “msk”, “data_valid”,”coord_epi_geom_i”, “coord_epi_geom_j”,”idx_im_epi”, “z_inf”, “z_sup”
attrs with keys: “epsg”
attributes containing: “bounds”, “epsg”
- Return type
CarsDataset filled with pandas.DataFrame