cars.applications.point_cloud_outliers_removing.statistical
this module contains the statistical points removing application class.
Module Contents
Classes
PointCloudOutliersRemoving |
Functions
|
Statistical outlier removing |
- class cars.applications.point_cloud_outliers_removing.statistical.Statistical(conf=None)
Bases:
cars.applications.point_cloud_outliers_removing.pc_out_removing.PointCloudOutliersRemoving
PointCloudOutliersRemoving
- check_conf(conf)
Check configuration
- Parameters
conf (dict) – configuration to check
- Returns
overloaded configuration
- Return type
dict
- get_optimal_tile_size(max_ram_per_worker, superposing_point_clouds=1, point_cloud_resolution=0.5)
Get the optimal tile size to use, depending on memory available
- Parameters
max_ram_per_worker (int) – maximum ram available
superposing_point_clouds (int) – number of point clouds superposing
point_cloud_resolution (float) – resolution of point cloud
- Returns
optimal tile size in meter
- Return type
float
- get_method()
Get margins to use during point clouds fusion
- Returns
algorithm method
- Return type
string
- get_on_ground_margin(resolution=0.5)
Get margins to use during point clouds fusion
- Returns
margin
- Return type
float
- run(merged_points_cloud, orchestrator=None, save_laz_output=False)
Run PointCloudOutliersRemoving application.
Creates a CarsDataset filled with new point cloud tiles.
- Parameters
merged_points_cloud (CarsDataset filled with pandas.DataFrame) –
merged point cloud. CarsDataset contains:
Z x W Delayed tiles. Each tile will be a future pandas DataFrame containing:
data : with keys : “x”, “y”, “z”, “corr_msk” optional: “clr”, “msk”, “data_valid”,”coord_epi_geom_i”, “coord_epi_geom_j”, “idx_im_epi”
attrs with keys: “epsg”
attributes containing “bounds”, “ysize”, “xsize”, “epsg”
orchestrator – orchestrator used
save_laz_output (bool) – save output point cloud as laz
- Returns
filtered merged points cloud. CarsDataset contains:
Z x W Delayed tiles. Each tile will be a future pandas DataFrame containing:
data : with keys “x”, “y”, “z”, “corr_msk” optional: “clr”, “msk”, “data_valid”, “coord_epi_geom_i”, “coord_epi_geom_j”, “idx_im_epi”
attrs with keys: “epsg”
attributes containing “bounds”, “ysize”, “xsize”, “epsg”
:rtype : CarsDataset filled with xr.Dataset
- cars.applications.point_cloud_outliers_removing.statistical.statistical_removing_wrapper(cloud, statistical_k, std_dev_factor, save_by_pair: bool = False, point_cloud_csv_file_name=None, point_cloud_laz_file_name=None, saving_info=None)
Statistical outlier removing
- Parameters
cloud (pandas DataFrame) – cloud to filter
statistical_k (float) – k
std_dev_factor (float) – std factor
save_by_pair (bool) – save point cloud as pair
point_cloud_csv_file_name (str) – write point cloud as CSV in filename (if None, the point cloud is not written as csv)
point_cloud_laz_file_name (str) – write point cloud as laz in filename (if None, the point cloud is not written as laz)
saving_info (dict) – saving infos
- Returns
filtered cloud
- Return type
pandas DataFrame