cars.orchestrator.cluster.mp_cluster.multiprocessing_cluster
Contains abstract function for multiprocessing Cluster
Module Contents
Classes
MultiprocessingCluster |
|
multiprocessing version of distributed.future |
Functions
|
Get list of jobs ids in future list |
|
Replace MpJob in list or dict by their real data |
|
Compute dependencies from args and kw_args |
|
Exception hook for cluster thread |
|
Update job to launch list with new priority list and ready list |
Attributes
- cars.orchestrator.cluster.mp_cluster.multiprocessing_cluster.SYS_PLATFORM
- cars.orchestrator.cluster.mp_cluster.multiprocessing_cluster.IS_WIN
- cars.orchestrator.cluster.mp_cluster.multiprocessing_cluster.RUN = 0
- cars.orchestrator.cluster.mp_cluster.multiprocessing_cluster.TERMINATE = 1
- cars.orchestrator.cluster.mp_cluster.multiprocessing_cluster.REFRESH_TIME = 0.05
- cars.orchestrator.cluster.mp_cluster.multiprocessing_cluster.job_counter
- class cars.orchestrator.cluster.mp_cluster.multiprocessing_cluster.MultiprocessingCluster(conf_cluster, out_dir, launch_worker=True)
Bases:
cars.orchestrator.cluster.abstract_cluster.AbstractCluster
MultiprocessingCluster
- check_conf(conf)
Check configuration
- Parameters
conf (dict) – configuration to check
- Returns
overloaded configuration
- Return type
dict
- get_delayed_type()
Get delayed type
- cleanup()
Cleanup cluster
- scatter(data, broadcast=True)
Distribute data through workers
- Parameters
data – task data
- create_task_wrapped(func, nout=1)
Create task
- Parameters
func – function
nout – number of outputs
- start_tasks(task_list)
Start all tasks
- Parameters
task_list – task list
- rec_start(delayed_object, memorize)
Record task
- Parameters
delayed_object (MpDelayed) – delayed object to record
memorize – list of MpDelayed already recorded
- static refresh_task_cache(pool, task_cache, in_queue, per_job_timeout, cl_future_list, nb_workers, wrapper_obj)
Refresh task cache
- Parameters
task_cache – task cache list
in_queue – queue
per_job_timeout – per job timeout
cl_future_list – current future list used in iterator
nb_workers – number of workers
- static get_ready_failed_tasks(wait_list, dependencies_list, done_task_results)
Return the new ready tasks without constraint and failed tasks
- static get_tasks_without_deps(dependencies_list, ready_list, nb_ready_task)
Return the list of ready tasks without dependencies and not considered like initial task (dependance = -1)
- future_iterator(future_list, timeout=None)
Start all tasks
- Parameters
future_list – future_list list
- cars.orchestrator.cluster.mp_cluster.multiprocessing_cluster.get_job_ids_from_futures(future_list)
Get list of jobs ids in future list
- Parameters
future_list (MpFuture) – list of futures
- Returns
list of job id
- Return type
list(int)
- cars.orchestrator.cluster.mp_cluster.multiprocessing_cluster.replace_job_by_data(args_or_kawargs, done_task_results)
Replace MpJob in list or dict by their real data
- Parameters
args_or_kawargs – list or dict of data
done_task_results – dict of done tasks
- cars.orchestrator.cluster.mp_cluster.multiprocessing_cluster.compute_dependencies(args, kw_args)
Compute dependencies from args and kw_args
- Parameters
args (list) – arguments
kw_args (dict) – key arguments
- Returns
dependencies
- Return type
list
- class cars.orchestrator.cluster.mp_cluster.multiprocessing_cluster.MpFutureTask(cluster)
multiprocessing version of distributed.future
- set(obj)
Set result to associated delayed object, and clean cache
- Parameters
obj (tuple(bool, Union(dataset, dataframe))) – result object
- cars.orchestrator.cluster.mp_cluster.multiprocessing_cluster.log_error_hook(args)
Exception hook for cluster thread
- cars.orchestrator.cluster.mp_cluster.multiprocessing_cluster.update_job_id_priority(job_ids_to_launch_prioritized, priority_list, ready_list)
Update job to launch list with new priority list and ready list
- Returns
updated list